Planar Propagating Terraces and the Asymptotic One-dimensional Symmetry of Solutions of Semilinear Parabolic Equations

نویسنده

  • Peter Polácik
چکیده

We consider the equation ut = ∆u + f(u) on RN . Under suitable conditions on f and the initial value u0 = u(·, 0), we show that as t→∞ the solution u(·, t) approaches a planar propagating terrace, or a stacked family of planar traveling fronts. Using this result, we show the asymptotic one-dimensional symmetry of u(·, t) as well as its quasiconvergence in Lloc(R ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagating terraces in a proof of the Gibbons conjecture and related results

The Gibbons conjecture stating the one-dimensional symmetry of certain solutions of semilinear elliptic equations has been proved by several authors. We show how attractivity properties of minimal propagating terraces of one-dimensional parabolic problems can be used in a proof of a version of this result and related statements.

متن کامل

Propagating terraces in a proof of the Gibbons

The Gibbons conjecture stating the one-dimensional symmetry of certain solutions of semilinear elliptic equations has been proved by several authors. We show how attractivity properties of minimal propagating terraces of one-dimensional parabolic problems can be used in a proof of a version of this result and related statements.

متن کامل

Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R

We consider semilinear parabolic equations of the form ut = uxx + f(u), x ∈ R, t > 0, where f a C1 function. Assuming that 0 and γ > 0 are constant steady states, we investigate the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x, 0) are near γ for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are both stable, our main theorem shows tha...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Determining nodes for semilinear parabolic equations

We discuss the uniqueness of the equilibria of time-global solutions of general semilinear parabolic equations by a finite set of values of these solutions. More precisely, if the asymptotic behaviour of a time-global solution is known on an appropriate finite set, then the asymptotic behaviour of a time-global solution itself is entirely determined in a domain.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2017